QUESTIONS COURTES

1. Soient A, B deux matrices $\mathcal{M}_n(\mathbb{R})$. On suppose que A admet n valeurs propres distinctes et que tout vecteur propre de A est également vecteur propre de B.

Montrer qu'il existe un polynôme $P \in \mathbb{R}[X]$ tel que P(A) = B.

2. Soit X une variable aléatoire réelle admettant un moment d'ordre 4 et une variance non nulle. Minimiser la quantité

$$f(a,b) = E[(X^2 - a - bX)^2]$$

lorsque (a,b) parcourt \mathbb{R}^2 .

- 3. Soit E un espace vectoriel de dimension finie $n \geqslant 2$. Soient H_1, H_2 deux hyperplans de E (sous—espaces vectoriels de dimension n-1). Quelle est la dimension de $H_1 \cap H_2$?
- 4. Parmi tous les parallélépipè des rectangles de surface totale S, quel est celui (quels sont ceux) de volume maximal?
- 5. Soit X une variable aléatoire de densité f paire et continue sur \mathbb{R} . On suppose que X^2 suit une loi exponentielle $\mathcal{E}(\lambda)$. Déterminer f.
- 6. Soit $E=\mathcal{M}_{2,1}(\mathbb{R})$. Déterminer une condition nécessaire et suffisante sur (a,b,c,d) réels pour que φ définie sur E^2 par

$$\varphi(X,Y)={}^t\!\!X\begin{pmatrix}a&b\\c&d\end{pmatrix}Y$$

soit un produit scalaire sur E.

7. Soit (X_n) une suite de variables aléatoires qui converge en loi vers une variable aléatoire X. A-t-on $\lim_{n\to +\infty} E(X_n)=E(X)$?

- 8. Soit $M \in \mathcal{M}_3(\mathbb{R})$ non nulle. Peut—on avoir M semblable à 2M? (on pourra commencer par étudier les valeurs propres d'une telle matrice).
- 9. Pour allumer un feu, on dispose de N allumettes. La probabilité d'allumer le feu avec une allumette donnée est $p\in]0,1[$. Vous finissez par allumer le feu.

On note X la variable aléatoire égale au nombre d'allumettes restantes. Déterminer la loi et l'espérance de X.

10. Existe—t-il une base de $\mathcal{M}_2(\mathbb{R})$ formée de matrices diagonalisables ? Existe—t-il une base de $\mathcal{M}_2(\mathbb{R})$ formée de matrices inversibles ?